Articles on Technology, Health, and Travel

Tangent plane approximation calculator of Technology

tangent plane calculator Natura.

Free linear algebra calculator - solve matrix and vector operations step-by-step ... Integral Applications Integral Approximation Series ODE Multivariable Calculus ...Using the fact that the normal of the tangent plane to the given sphere will pass through it's centre, $(0,0,0).$ We get the normal vector of the plane as: ... Equation for Tangent Plane and Linear Approximation. 1. How to find the point …Jan 16, 2023 · Note that since two lines in \(\mathbb{R}^ 3\) determine a plane, then the two tangent lines to the surface \(z = f (x, y)\) in the \(x\) and \(y\) directions described in Figure 2.3.1 are contained in the tangent plane at that point, if the tangent plane exists at that point. The existence of those two tangent lines does not by itself ... Jan 17, 2020 · Figure 3.5.4: Linear approximation of a function in one variable. The tangent line can be used as an approximation to the function f(x) for values of x reasonably close to x = a. When working with a function of two variables, the tangent line is replaced by a tangent plane, but the approximation idea is much the same. Here is a set of notes used by Paul Dawkins to teach his Calculus III course at Lamar University. Topics covered are Three Dimensional Space, Limits of functions of multiple variables, Partial Derivatives, Directional Derivatives, Identifying Relative and Absolute Extrema of functions of multiple variables, Lagrange Multipliers, Double …When using slope of tangent line calculator, the slope intercepts formula for a line is: x = my + b. Where “m” slope of the line and “b” is the x intercept. So, the results will be: x = 4y2– 4y + 1aty = 1. Result = 4. Therefore, if you input the curve “x= 4y^2 – 4y + 1” into our online calculator, you will get the equation of ...Jan 16, 2023 · Note that since two lines in \(\mathbb{R}^ 3\) determine a plane, then the two tangent lines to the surface \(z = f (x, y)\) in the \(x\) and \(y\) directions described in Figure 2.3.1 are contained in the tangent plane at that point, if the tangent plane exists at that point. The existence of those two tangent lines does not by itself ... Tangent Planes. Just as we can visualize the line tangent to a curve at a point in 2-space, in 3-space we can picture the plane tangent to a surface at a point. Consider the surface given by z = f(x, y). Let (x0, y0, z0) be any point on this surface. If f(x, y) is differentiable at (x0, y0), then the surface has a tangent plane at (x0, y0, z0).Free slope calculator - find the ... System of Inequalities Polynomials Rationales Complex Numbers Polar/Cartesian Functions Arithmetic & Comp. Coordinate Geometry Plane Geometry Solid Geometry Conic Sections Trigonometry. Calculus. Derivatives Derivative Applications Limits Integrals Integral Applications Integral Approximation Series ODE ...The Linearization Calculator also provides a graph plot for the linearization approximation of f(x) at the point a in a x-y plane. The plot shows the non-linear curve of the function f(x). It also displays the linear approximation at the point a, which is a tangent line drawn at the point a on the curve. Jan 16, 2023 · Note that since two lines in \(\mathbb{R}^ 3\) determine a plane, then the two tangent lines to the surface \(z = f (x, y)\) in the \(x\) and \(y\) directions described in Figure 2.3.1 are contained in the tangent plane at that point, if the tangent plane exists at that point. The existence of those two tangent lines does not by itself ... Free implicit derivative calculator - implicit differentiation solver step-by-step ... System of Inequalities Polynomials Rationales Complex Numbers Polar/Cartesian Functions Arithmetic & Comp. Coordinate Geometry Plane Geometry Solid Geometry Conic ... Tangent to Conic; Linear Approximation; Difference Quotient; Horizontal Tangent; Limits. One ...The linearization at x = a is given by. L(x) = f (a) + f '(a)(x − a) Knowing f (x) = cosx,a = π 4, then. f ( π 4) = cos( π 4) = √2 2. f '(x) = −sinx,f '( π 4) = −sin( π 4) = − √2 2. Our linearization is then. L(x) = √2 2 − √2 2 (x − π 4) Further simplification would not necessarily result in a cleaner expression ...The idea of tangent lines can be extended to higher dimensions in the form of tangent planes and tangent hyperplanes. A normal line is a line that is perpendicular to the tangent line or tangent plane. Wolfram|Alpha can help easily find the equations of secants, tangents and normals to a curve or a surface. Find a secant line to a curve.tangent plane calculator Natural Language Math Input Extended Keyboard Examples Wolfram|Alpha brings expert-level knowledge and capabilities to the broadest possible range of people—spanning all professions and education levels.The trigonometric functions sine, cosine and tangent calculate the ratio of two sides in a right triangle when given an angle in that triangle. To find the cosine of angle pi, you need graph paper.Because the binormal vector is defined to be the cross product of the unit tangent and unit normal vector we then know that the binormal vector is orthogonal to both the tangent vector and the normal vector. Example 3 Find the normal and binormal vectors for →r (t) = t,3sint,3cost r → ( t) = t, 3 sin t, 3 cos t . Show Solution. In this ...Find an approximate value for \(f (-0.9\,,\, 1.1)\) without using a calculator or computer. 5. Four numbers, each at least zero and each at most 50, are rounded to the first decimal place and then multiplied together. ... Find the tangent plane approximation to the value of \(f(1.99, 1.01)\) using the tangent plane from part (a). 25.tangent plane to z=2xy^2-x^2y at (x,y)=(3,2) Natural Language; Math Input; Extended Keyboard Examples Upload Random. Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history, geography, engineering, mathematics, linguistics, sports, finance ...In this case, a surface is considered to be smooth at point \( P\) if a tangent plane to the surface exists at that point. If a function is differentiable at a point, then a tangent plane to the surface exists at that point. Recall the formula (Equation \ref{tanplane}) for a tangent plane at a point \( (x_0,y_0)\) is given bySlope of Tangent Line—Instantaneous Rate of Change. The slope of the tangent line to the graph of a function y = f(x) at the point P = (x, f(x)) is given by. m = lim Δx → 0f(x + Δx) − f(x) Δx, provided this limit exists. Note: The slope of the tangent line is also referred to as the insantaneous rate of change of f at x.Since the equation of the tangent plane at (a,b,f(a,b)) is z = f(a,b)+(x−a) ... The function L(x,y) is also called the Linear Approximation to f at (a,b).Tangent Planes and Linear Approximations PARTIAL DERIVATIVES In this section, we will learn how to: Approximate functions using tangent planes and linear functions. TANGENT PLANES Suppose a surface S has equation z = f(x, y), where f has continuous first partial derivatives. Let P(x0, y0, z0) be a point on S. TANGENT PLANES When using slope of tangent line calculator, the slope intercepts formula for a line is: x = my + b. Where “m” slope of the line and “b” is the x intercept. So, the results will be: x = 4y2– 4y + 1aty = 1. Result = 4. Therefore, if you input the curve “x= 4y^2 – 4y + 1” into our online calculator, you will get the equation of ...The tangent plane was determined as the plane which has the same slope as the surface in the i and j directions. This means the approximation (6) will be good if you move away from (x0,y0) in the i direction (by taking Δy = 0), or in the j direction (putting Δx = 0). But does the tangent plane have the same slope as the surfaceThis calculator determines the equation of the tangent plane touching the surface (formed by given mathematical function) at the coordinate points. It also provides a step-by-step solution entailing all the relevant details differentiation. Linear Approximation Calculator. Linear approximation is also known as a tangent line or tangent in geometry means a line or plane that intersects a curve or a curved surface at exactly one point.. What is the Linear Approximation Calculator? 'Linear Approximation Calculator' is an online tool that helps to calculate the value of linear approximation for …In general, we know from (2) that an equation of the tangent plane to the graph of a functionf of two variables at the point is if and are continuous. The linear function whose graph is this tangent plane, namely is called the linearization of f at and the approximation is called the linear approximation or the tangent plane approximation of ...Sep 28, 2023 · This line is itself a function of x. Replacing the variable y with the expression L(x), we call. L(x) = f′(a)(x − a) + f(a) the local linearization of f at the point (a, f(a)). In this notation, L(x) is nothing more than a new name for the tangent line. As we saw above, for x close to a, f(x) ≈ L(x). Example 1.8.1. Figure 13.6.1: The tangent plane to a surface S at a point P0 contains all the tangent lines to curves in S that pass through P0. For a tangent plane to a surface to exist at a point on that surface, it is sufficient for the function that defines the surface to be differentiable at that point.$\begingroup$ That's not really using parametric equations to their full advantage. You've solved for x, and then used y=t to fake using parametric equations. You could also solve for y and then proceed as you normally would for y=f(x).Example. A military plane takes o from a military base. Its trajectory is a parabolic curve y= 2000x x2. At the point with coordinates (1200;960000) the plane launches a missile towards the target with the coordinates (1800;720000). The path of the missile is a straight line tangent to the trajectory of the plane at the point of the launch. Explore math with our beautiful, free online graphing calculator. Graph functions, plot points, visualize algebraic equations, add sliders, animate graphs, and more. Tangent Line Approximation | DesmosThe Linearization Calculator also provides a graph plot for the linearization approximation of f(x) at the point a in a x-y plane. The plot shows the non-linear curve of the function f(x). It also displays the linear approximation at the point a, which is a tangent line drawn at the point a on the curve.Explore math with our beautiful, free online graphing calculator. Graph functions, plot points, visualize algebraic equations, add sliders, animate graphs, and more. Tangent Line Approximation | DesmosAt time stamp. 2:50. , Sal is calculating the value of the linear approximation using the point slope formula in the form, (y-y1)/ (x-x1)=b, and he points to b and calls it the slope. But I always thought that b was the y intercept. So b would be equal to: (y-y1) – m (x-x1)=b, and that would be the y intercept, not the slope.(b) Calculate f(-2.4)|| and give an interpretation for its meaning. (c) Calculate the directional derivative at (-2, 4) in the direction toward the origin. (d) If you are starting at the point (-2,4), give a direction that you can move so that the function's value does not change.Lineaar Approximation, Tangent Plane, Di erentials, Chain Rule Deane Yang Courant Institute of Mathematical Sciences New York University October 6, 2021. START RECORDING LIVE TRANSCRIPT. ... and we want to calculate f x and f y I Write this as f = p2eq, where p = 2y + 3 and q = 5x 4 I Then dp = 2dy dq = 5ddxNov 16, 2022 · Section 14.1 : Tangent Planes and Linear Approximations. Back to Problem List. 3. Find the linear approximation to z = 4x2−ye2x+y z = 4 x 2 − y e 2 x + y at (−2,4) ( − 2, 4) . Show All Steps Hide All Steps. Start Solution. Doubt it. The tangent to a 4 dimensional object would be a 3d surface. But, I would think the surface would be highly specific, as the tangent to a 2d graph is a straight line and only a straight line and the tangent to a 3d surface would be a flat plane and only a flat plane.It then shows how to plot a tangent plane to a point on the surface by using these approximated gradients. ... The fx and fy matrices are approximations to the ...tangent line calculator. Natural Language. Math Input. Extended Keyboard. Examples. Wolfram|Alpha brings expert-level knowledge and capabilities to the broadest possible range of people—spanning all professions and education levels.May 19, 2021 · Figure 3.5.4: Linear approximation of a function in one variable. The tangent line can be used as an approximation to the function f(x) for values of x reasonably close to x = a. When working with a function of two variables, the tangent line is replaced by a tangent plane, but the approximation idea is much the same. The tangent plane approximation to f at the point P (x 0 ... Get more help from Chegg . Solve it with our Calculus problem solver and calculator. Not the exact question you're looking for? Post any question and get expert help quickly. Start learning . Chegg Products & Services. CheggMate; Cheap Textbooks; Chegg Life; Chegg Play; Chegg Study Help;Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history ... point (f (a)) we can use these to find the tangent line, and then use the tangent line to approximate f (x) for other points x. Of course, this approximation will only be good when x is relatively near a. The tangent line approximation of f (x) for x near a is called the first degree Taylor Polynomial of f (x) and is: f (x) ≈ f (a)+ f (a)(x ...The equation of the tangent line is given by. y −y0 = f′(x0)(x − x0). y − y 0 = f ′ ( x 0) ( x − x 0). For x x close to x0 x 0, the value of f(x) f ( x) may be approximated by. f(x) ≈ f(x0) +f′(x0)(x −x0). f ( x) ≈ f ( x 0) + f ′ ( x 0) ( x − x 0). [ I’m ready to take the quiz. ] [ I need to review more.]Let T T be a plane which contains the point P P, and let Q = (x, y, z) Q = ( x, y, z) represent a generic point on the surface S S. If the (acute) angle between the vector …Figure 13.4.4: Linear approximation of a function in one variable. The tangent line can be used as an approximation to the function f(x) for values of x reasonably close to x = a. When working with a function of two variables, the tangent line is replaced by a tangent plane, but the approximation idea is much the same. Tangent Planes and Linear Approximations PARTIAL DERIVATIVES In this section, we will learn how to: Approximate functions using tangent planes and linear functions. TANGENT PLANES Suppose a surface S has equation z = f(x, y), where f has continuous first partial derivatives. Let P(x0, y0, z0) be a point on S. TANGENT PLANESFigure 3.5.4: Linear approximation of a function in one variable. The tangent line can be used as an approximation to the function f(x) for values of x reasonably close to x = a. When working with a function of two variables, the tangent line is replaced by a tangent plane, but the approximation idea is much the same.A pipe offset is calculated when a pipe is altered in both the vertical and horizontal planes of a piping system. Once the true offset is known, the pipe fitter can utilize a table to find out the setback and diagonal center. Most fitting c...In this exercise, you’re given a curve described by the vector function with a parameter called . If we fix to be some value, call it , then the tangent line at can be indeed be parameterized as , as you’ve written. Note, however, that the in this latter expression is not the same as the in the expression for .Dec 18, 2020 · Furthermore the plane that is used to find the linear approximation is also the tangent plane to the surface at the point (x0, y0). Figure 2.5.5: Using a tangent plane for linear approximation at a point. Given the function f(x, y) = √41 − 4x2 − y2, approximate f(2.1, 2.9) using point (2, 3) for (x0, y0). The output value of L together with its input values determine the plane. The concept is similar to any single variable function that determines a curve in an x-y plane. For example, f (x)=x^2 determines a parabola in an x-y plane even though f (x) outputs a scalar value. BTW, the topic of the video is Tangent Planes of Graphs. Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history ... boxes. Putting these two statements together, we have Furthermore the plane that is used to find the linearIntuitively, it seems clear that, in a plane, only one li

Health Tips for Pizza near me delivery open late

Tangent Planes. Just as we can visualize the line tangent to a cu.

in the plane using osculating circles and local approximation by parabolas. 2.3.3 Definitions as bending of tangent in arclength; alternate forms. Eventually Newton’s definition was refined to become the geometric version used today, which says: Along a curve, measure the instantaneous rate at which theThe east north up (ENU) local tangent plane is similar to NED, except for swapping 'down' for 'up' and x for y. Local tangent plane coordinates (LTP), also known as local ellipsoidal system, local geodetic coordinate system, or local vertical, local horizontal coordinates (LVLH), are a spatial reference system based on the tangent plane defined by the local …On this platform of you will get tested, efficient, and reliable educational calculators. Recent research reveals that an education calculator is an efficient tool that is utilized by teachers and students for the ease of mathematical exploration and experimentation. Teachers and students can solve any mathematical problems/equations using ...Solution. Find the linear approximation to z =4x2 −ye2x+y z = 4 x 2 − y e 2 x + y at (−2,4) ( − 2, 4). Solution. Here is a set of practice problems to accompany the Tangent Planes and Linear Approximations section of the Applications of Partial Derivatives chapter of the notes for Paul Dawkins Calculus III course at Lamar University.The equation of the tangent line is given by. y −y0 = f′(x0)(x − x0). y − y 0 = f ′ ( x 0) ( x − x 0). For x x close to x0 x 0, the value of f(x) f ( x) may be approximated by. f(x) ≈ f(x0) +f′(x0)(x −x0). f ( x) ≈ f ( x 0) + f ′ ( x 0) ( x − x 0). [ I’m ready to take the quiz. ] [ I need to review more.] The tangent plane to the surface z=-x^2-y^2 at the point (0,2) is shown below. The logical questions are under what conditions does the tangent plane exist and what is the equation of the tangent plane to a surface at a given point. The Tangent Plane Let P_0(x_0,y_0,z_0) be a point on the surface z=f(x,y) where f(x,y) is a differentiable function. Derivatives Derivative Applications Limits Integrals Integral Applications Integral Approximation Series ODE Multivariable Calculus Laplace Transform Taylor/Maclaurin Series Fourier Series Fourier Transform. ... linear-algebra-calculator. tangent plane. en. Related Symbolab blog posts. The Matrix, Inverse.Free Trapezoidal Approximation calculator ... System of Inequalities Polynomials Rationales Complex Numbers Polar/Cartesian Functions Arithmetic & Comp. Coordinate Geometry Plane Geometry Solid Geometry Conic Sections Trigonometry. ... Tangent; Slope of Tangent; Normal; Curved Line Slope; Extreme Points; Tangent to Conic;The Federal Aviation Administration on Thursday said it had cleared approximately 78% of the U.S. commercial fleet for operations at airports impacted by 5G C-band, as some regional flights near San Francisco saw 5G-related disruptions. The...Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history ...tangent plane to z=2xy^2-x^2y at (x,y)=(3,2) Natural Language; Math Input; Extended Keyboard Examples Upload Random. Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history, geography, engineering, mathematics, linguistics, sports, finance ...The tangent plane to a surface at a given point p is defined in an analogous way to the tangent line in the case of curves. It is the best approximation of the surface by a plane at p , and can be obtained as the limiting position of the planes passing through 3 distinct points on the surface close to p as these points converge to p .Find the Linear Approximation to the Multivariable Function Using the Tangent Plane and Estimate a function value.If you enjoyed this video please consider l...To find the linear approximation equation, find the slope of the function in each direction (using partial derivatives), find (a,b) and f (a,b). Then plug all these pieces into the linear approximation formula to get the linear approximation equation.A tangent plane to a two-variable function f (x, y) ‍ is, well, a plane that's tangent to its graph. The equation for the tangent plane of the graph of a two-variable function f ( x , y ) ‍ at a particular point ( x 0 , y 0 ) ‍ looks like this:Free tangent line calculator - find the equation of the tangent line given a point or the intercept step-by-stepIt uses functions such as sine, cosine, and tangent to describe the ratios of the sides of a right triangle based on its angles. What are the 3 types of trigonometry functions? The three basic trigonometric functions are: Sine (sin), Cosine (cos), and Tangent (tan). Free linear algebra calculator - solve matrix and vectothe linear approximation, or tangent line approximation, of

Top Travel Destinations in 2024

Top Travel Destinations - Using vectors and matrices, specifically the gradient and Hes

Explore math with our beautiful, free online graphing calculator. Graph functions, plot points, visualize algebraic equations, add sliders, animate graphs, and more. Tangent Line Approximation | Desmos Using the fact that the normal of the tangent plane to the given sphere will pass through it's centre, $(0,0,0).$ We get the normal vector of the plane as: $\hat i+2\hat j+3\hat k$.tangent line calculator. Natural Language. Math Input. Extended Keyboard. Examples. Wolfram|Alpha brings expert-level knowledge and capabilities to the broadest possible range of people—spanning all professions and education levels.The output value of L together with its input values determine the plane. The concept is similar to any single variable function that determines a curve in an x-y plane. For example, f (x)=x^2 determines a parabola in an x-y plane even though f (x) outputs a scalar value. BTW, the topic of the video is Tangent Planes of Graphs. Final answer. Use the tangent plane approximation to calculate approximately how much more area a rectangle that is 5.01 by 3.02 cm has than one which is 5 by 3 . Draw a diagram showing the smaller rectangle inside the enlarged rectangle. On this diagram clearly indicate rectangles corresponding to the two terms in the tangent line approximation.Tangent Plane. Determine the plane touching a surface at a given point. Tangential Component of Acceleration. Measure acceleration in the direction of motion. Taylor (Maclauring) Series. Expand a function into an infinite series and get a close approximation near a specific point. Torsion. Compute the torsion of a vector-valued function at a ...(1 point) Cooper 15.3.01 Apply the tangent plane approximation to find f(2.003, 1.04) where f(x, y) = 3x2 + y2. f(2.003, 1.04) 0.116 This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts.Let (x_0,y_0) be any point of a surface function z=f(x,y). Then the surface has a nonvertical tangent plane at (x_0,y_0) with equation z=f(x_0,y_0)+f_x(x_0 ...Desmos offers best-in-class calculators, digital math activities, and curriculum to help every student love math and love learning math.As you can see (animation won't work on all pdf viewers unfortunately) as we moved \(Q\) in closer and closer to \(P\) the secant lines does start to look more and more like the tangent line and so the approximate slopes (i.e. the slopes of the secant lines) are getting closer and closer to the exact slope.Also, do not worry about how I got the exact …In exercises 8 - 19, find the equation for the tangent plane to the surface at the indicated point. ... Use the differential \( dz\) to approximate the change in \( z=\sqrt{4−x^2−y^2}\) …Furthermore the plane that is used to find the linear approximation is also the tangent plane to the surface at the point (x 0, y 0). ( x 0 , y 0 ) . Figure 4.31 Using a tangent plane for linear approximation at a point. is called the piriform. What is the equation for the tangent plane at the point P = (2,2,2) of this pair shaped surface? We get ha,b,ci = h20,4,4i and so the equation of the plane 20x + 4y + 4z = 56, where we have obtained the constant to the right by plugging in the point (x,y,z) = (2,2,2).tangent plane calculator Natural Language Math Input Extended Keyboard Examples Wolfram|Alpha brings expert-level knowledge and capabilities to the broadest possible range of people—spanning all professions and education levels. May 19, 2021 · Figure 3.5.4: Linear approximation of a function in one variable. The tangent line can be used as an approximation to the function f(x) for values of x reasonably close to x = a. When working with a function of two variables, the tangent line is replaced by a tangent plane, but the approximation idea is much the same. Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history ...Definition 1.3.1. The circle which best approximates a given curve near a given point is called the circle of curvature or the osculating circle 2 at the point. The radius of the circle of curvature is called the radius of curvature at the point and is normally denoted ρ. The curvature at the point is κ = 1 ρ.critical point calculator. Natural Language. Math Input. Extended Keyboard. Examples. Wolfram|Alpha brings expert-level knowledge and capabilities to the broadest possible range of people—spanning all professions and education levels.Using the fact that the normal of the tangent plane to the given sphere will pass through it's centre, $(0,0,0).$ We get the normal vector of the plane as: $\hat i+2\hat j+3\hat k$.We do this by starting at (x0, f(x0)) ( x 0, f ( x 0)) and moving along the tangent line to approximate the value of the function at x x . Look at f(x) = arctanx f ( x) = arctan x. Let’s use the tangent approximation f(x) ≈ f(x0) +f′(x0)(x −x0) f ( x) ≈ f ( x 0) + f ′ ( x 0) ( x − x 0) to approximate f(1.04) f ( 1.04) :In this exercise, you’re given a curve described by the vector function with a parameter called . If we fix to be some value, call it , then the tangent line at can be indeed be parameterized as , as you’ve written. Note, however, that the in this latter expression is not the same as the in the expression for .Example \(\PageIndex{4}\) Find the tangent line to the curve of intersection of the sphere \[x^2 + y^2 + z^2 = 30\nonumber \] and the paraboloidFree implicit derivative calculator - implicit differentiation solver step-by-step ... System of Inequalities Polynomials Rationales Complex Numbers Polar/Cartesian Functions Arithmetic & Comp. Coordinate Geometry Plane Geometry Solid Geometry Conic ... Tangent to Conic; Linear Approximation; Difference Quotient; Horizontal Tangent; Limits. One ...Answer to Solved Use the tangent plane approximation to calculate. Skip to main content. Books. Rent/Buy; Read; Return; Sell; Study. Tasks. Homework help; Exam prep; Understand a topic; Writing ... Solve it with our Calculus problem solver and calculator. Not the exact question you're looking for? Post any question and get expert help quickly ... Note that since two lines in \(\mathbb{R}^ 3\) det